

CONTENTS

Peripheral Devices

Input-Output Interface

Asynchronous Data Transfer

Modes of Transfer

3
/2

7
/2

0
2
0

2

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

PERIPHERAL DEVICES

Input Devices

• Keyboard

• Optical input devices

- Card Reader

- Paper Tape Reader

- Bar code reader

- Digitizer

- Optical Mark Reader

• Magnetic Input Devices

- Magnetic Stripe Reader

• Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

• Analog Input Devices

Output Devices

• Card Puncher, Paper Tape Puncher

• CRT

• Printer (Impact, Ink Jet,

Laser, Dot Matrix)

• Plotter

• Analog

• Voice

INPUT/OUTPUT INTERFACE
 Provides a method for transferring information between internal storage

(such as memory and CPU registers) and external I/O devices.

 I/O devices needs special communication links for interfacing them with

the CPU.

 The purpose of the communication link is to resolves the differences

between the computer and peripheral devices. The major differences are:

 Peripherals – Electromechanical and electromagnetic Devices

 CPU or Memory - Electronic Device

 Therefore a conversion of signal values may be required.

 Data Transfer Rate

 Peripherals - Usually slower

 CPU or Memory - Usually faster than peripherals

 Some kinds of Synchronization mechanism may be needed

 Unit of Information

 Peripherals – Byte, Block, …

 CPU or Memory – Word

 Data representations may differ. Operating mode of peripherals are differ

from each other and each must be controlled so as not to disturb the operation

of others peripherals connected to the CPU.

 To resolve these differences, computer system includes special hardware

components between CPU and I/O devices to supervise and synchronize all

input and output transfers. These components are called interface units.

I/O BUS AND INTERFACE MODULES

Each peripheral has an interface module associated with it interface with do

following:
•Decodes the device address (device code)
•Decodes the commands (operation)
•Provides signals for the peripheral controller
•Synchronizes the data flow and supervises the transfer rate between
peripheral and CPU or Memory

Typical I/O instruction

(Command)

Op. code Device address Function code

Processor

Interface

Keyboard
and

display
terminal

Magnetic
tape

Printer

Interface Interface Interface

Data

Address

Control

Magnetic
disk

I/O bus

COMMANDS

The I/O bus from the processor is attached to all the I/O devices interface.

To communicate with a particular device, the processor puts a device address on
the address line.

When interface detects its own address, it activate the path between the bus
line and the device that it controls.

At the same time that the address is made available in the address lines, the
processor provides a function code in the control lines.

The interface selected respond to the function code and proceeds to execute it.

The function code is referred to as an I/O command and is in essence an
instruction that is executed in the interface and its attached peripheral unit.

•Control,

•Status,

•Data Output,

•Data Input.

There are four types of command that an interface may
receive.

CONNECTION OF I/O BUS

Connection of I/O Bus to One Interface

Connection of I/O Bus to CPU

I/O
bus

Op.

code

Device

address

Function

code

Accumulator
register

Computer

I/O
control

Sense lines

Data lines

Function code lines

Device address lines

CPU

I/O
bus

Device

address

Command

decoder

Function code

Data lines

Buffer register

Peripheral
register

Status
register

Sense lines

Output

peripheral

device

and

controller

AD = 1101 Interface

Logic

I/O BUS AND MEMORY BUS

•MEMORY BUS is for information transfers between CPU
and the
MM

• I/O BUS is for information transfers between CPU
and I/O devices through their I/O interface

•Many computers use a common single bus system
for both memory and I/O interface units

•Use one common bus but separate control lines for each
function

•Use one common bus with common control lines for both
functions

•Some computer systems use two separate buses, one to
communicate with memory and the other with I/O interfaces

In addition to communicating with I/O, the processor must communicate with

the memory unit. Like the I/O bus, the memory bus contains data, address,

and read/write control lines.

Functions of Buses

Physical Organizations

ISOLATED VS MEMORY MAPPED I/O

- Separate I/O read/write control lines in addition to memory
read/write control lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and output instructions

Isolated I/O

Memory-mapped I/O

- A single set of read/write control lines
(no distinction between memory and I/O transfer)

- Memory and I/O addresses share the common address space

-> reduces memory address range available

- No specific input or output instruction

-> The same memory reference instructions can
be used for I/O transfers

- Considerable flexibility in handling I/O operations

I/O INTERFACE

CS RS1 RS0 Register selected

0 x x None - data bus in high-impedence
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register

Chip select

Register select

Register select

I/O read

I/O write

CS

RS1

RS0

RD

WR

Timing
and

Control

Bus
buffers

Bidirectional
data bus

Port A
register

Port B
register

Control
register

Status
register

I/O data

I/O data

Control

Status

CPU I/O

Device

The I/O data to and from

the device can be

transferred into either

port A or port B.
The transfer of data, control, or status information is via a

common data bus. The distinction between data, control, or

status information is determine from the particular

interface register with which the CPU communicates.

ASYNCHRONOUS DATA TRANSFER

Synchronous and Asynchronous Operations
Synchronous - All devices derive the timing

information from common clock line

Asynchronous - No common clock

Asynchronous data transfer between two independent units

requires that control signals be transmitted between the

communicating units to indicate the time at which data is

being transmitted. One way to achieving this is by means of

a STROBE pulse method. Other way is HANDSHAKING

method.

In general case we consider the transmitting unit as the

source and receiving unit as the destination.

Asynchronous Data Transfer

ASYNCHRONOUS DATA TRANSFER METHODS

 Strobe pulse

- A strobe pulse is supplied by one unit to

indicate the other unit when the transfer has to

occur.

 Handshaking

- A control signal is accompanied with each data

being transmitted to indicate the presence of data.

- The receiving unit responds with another

control signal to acknowledge receipt of the data.

* Employs a single control line (STROBE) and a data bus .

* The strobe may be activated by either the source or

the destination unit.

STROBE CONTROL

Source
unit

Destination
unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Timing Diagram

Source-Initiated Strobe

for Data Transfer

Source

unit

Destination

unit

Data bus

Strobe

Data

Strobe

Valid data

Block Diagram

Destination-Initiated Strobe

for Data Transfer

Timing Diagram

HANDSHAKING

In Strobe Methods

Source-Initiated

The source unit that initiates the transfer has

no way of knowing whether the destination unit

has actually received data

Destination-Initiated

The destination unit that initiates the transfer

no way of knowing whether the source has

actually placed the data on the bus

To solve this problem, the HANDSHAKE method

introduces a second control signal to provide a Reply

to the unit that initiates the transfer

SOURCE-INITIATED TRANSFER USING HANDSHAKE

* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit

Block Diagram

Timing Diagram

Accept data from bus.
Enable data accepted

Disable data accepted.
Ready to accept data
(initial state).

Sequence of Events

Place data on Data bus.

Enable data valid.

Source unit Destination unit

Disable data valid.
Invalidate data on bus.

Source
unit

Destination
unit

Data bus

Data accepted

Data bus

Data valid

Valid data

Data valid

Data accepted

DESTINATION-INITIATED TRANSFER USING HANDSHAKE

* Handshaking provides a high degree of flexibility and reliability because the

successful completion of a data transfer relies on active participation by both units
•If one unit is faulty, data transfer will not be completed -> Can be detected by means of
a timeout mechanism, which produces a alarm if data transfer is not completed in time.

Block Diagram

Timing Diagram

Source
unit

Destination
unit

Data bus

Ready for data

Data valid

Sequence of Events

Place data on bus.
Enable data valid.

Source unit Destination unit

Ready to accept data.
Enable ready for data.

Disable data valid.
Invalidate data on bus
(initial state).

Accept data from bus.
Disable ready for data.

Ready for data

Data valid

Data bus
Valid data

ASYNCHRONOUS SERIAL TRANSFER

Asynchronous serial transfer
Synchronous serial transfer
Asynchronous parallel transfer
Synchronous parallel transfer

- Employs special bits which are inserted at both ends of the character code

- Each character consists of three parts; Start bit; Data bits; Stop bits.

A character can be detected by the receiver from the knowledge of

4 rules;

- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected

by a Start Bit , which is always a 0
- The character bits always follow the Start Bit
- After the last bit of the character , a Stop Bit is detected when

the line returns to the 1-state for at least 1 bit time

Four Different Types of Transfer :->>>

Asynchronous Serial Transfer

Start
bit

(1 bit)

Stop
bits

Character bits

1 1 0 0 0 1 0 1

(at least 1 bit)

UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -

A typical asynchronous communication interface available as an IC

Transmitter Register
- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission

Receiver
- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits
- Used for I/O flags and for recording errors (parity , framing, overrun error)

Control Register Bits
- Define baud rate, no. of bits in each character, whether to generate and check

parity, and no. of stop bits , used for initialization.

Chip select

Register select

I/O read

I/O write

CS

RS

RD

WR

Timing

and

Control

Bus

buffers

Bidirectional
data bus

Transmitter
register

Control
register

Status
register

Receiver
register

Shift
register

Transmitter
control

and clock

Receiver
control

and clock

Shift
register

Transmit
data

Transmitter
clock

Receiver
clock

Receive
data

CS RS Oper. Register selected

0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register

In
te

rn
a
l

B
u

s

It functions as both as a

transmitter and

receiver.

Parallel transformation

Parallel transformation

MODES OF TRANSFER - PROGRAM-CONTROLLED I/O -

3 different Data Transfer Modes between the central

computer(CPU or Memory) and peripherals; Program-Controlled I/O

Interrupt-Initiated I/O

Direct Memory Access (DMA) Program-Controlled I/O(Input Dev to CPU)

Modes of Transfer

Polling or Status Checking

• Continuous CPU involvement
• CPU slowed down to I/O speed

• Simple
• Least hardware

Read status register
Check flag bit

flag

Read data register
Transfer data to memory

Operation
complete?

Continue with
program

= 0

= 1

yes

no

CPU

Data bus

Address bus

I/O read

I/O write

Interface

Data register

Status
register F

I/O bus

Data valid

Data accepted

I/O
device

Transferring data under program control

requires constant monitoring of the peripherals

by the CPU.(CPU stays in a program loop).

Useful for small low speed computers or in

systems that are dedicated to monitor a device

continuously.

MODES OF TRANSFER - INTERRUPT INITIATED I/O & DMA

DMA (Direct Memory Access)

-Large blocks of data transferred at a high speed to or from high speed
devices, magnetic drums, disks, tapes, etc.

-DMA controller is a Interface that provides I/O transfer of data directly to
and from the memory and the I/O device

-CPU initializes the DMA controller by sending a memory address and the
number of words to be transferred

-Actual transfer of data is done directly between the device and memory
through DMA controller --> Freeing CPU for other tasks

- Polling takes valuable CPU time
- Open communication only when some data has to be passed -> Interrupt.
- I/O interface, instead of the CPU, monitors the I/O device
-When the interface determines that the I/O device is ready for data transfer,

it generates an Interrupt Request to the CPU
-Upon detecting an interrupt, CPU stops momentarily the task it is doing,

branches to the service routine to process the data transfer, and then
returns to the task it was performing

-CPU responds to the interrupt signal by storing the return address from the
program counter into memory stack and then control branches to a service
routine that processes the required I/O transfer.

Interrupt Initiated I/O

Thank you

3
/2

7
/2

0
2
0

21

C
o
m

p
u

te
r o

rg
a

n
iz

a
tio

n
 &

 A
rch

ite
ctu

re
 b

y

D
r. S

. K
. S

in
g
h

